ich habe eine Frage (Ich würde mich über eine Antwort freuen, da ich meine Klausur noch in dieser Woche habe)
Thema:
Es geht um darstellende Matrizen in der linearen Algebra. Wenn ich jetzt eine lineare Abbildung f: V -> W habe mit einer Basis U = (u1,… um) des Urbildraum V mit dim(V) = m und einer Basis B = (b1,…,bm) des Bildraumes W mit dim(W) = m und dazu die darstellende Matrix M bekomme.
Nun soll ich die Bildvektoren der Basisvektoren von U bestimmen, also U = (u1,..,un) ist ja die Basis von V, so muss ich f(u1),…,f(un) bestimmen.
Frage:
Ist dann folgender Ansatz korrekt?:
1. Ich bilde die Koordinatenvektoren der Basisvektoren aus U, indem ich je einen Basisvektor ui aus U nehme (i = 1,…,n) und diesen mit den Basis-Vektoren u1,…,un aus U linearkombinatorisch darstelle, also Beispiel:
u1 = 1·u1 + … + 0·un, also wäre der erste Einheitsvektor der Koordinatenvektor zu u1.
2. Ich bilde das Matrix-Vektor-Produkt von diesen Koordinatenvektoren, also den Einheitsvektoren mit der darstellenden Matrix und bekomme die Koordinatenvektoren aus Km, welche ja dann einfach nur die einzelnen Spalten der darstellenden Matrix sind.
3. Ich nehme die gegebene Basis B von W und multipliziere dessen Basis-Vektoren mit den Koordinaten der berechneten Koordinatenvektoren aus Km, also die einzelnen Spalten der Darstellungsmatrix. Ich bilde also eine Linearkombination und die Vektoren die da rauskommen sind die ursprünglich gesuchten Bildvektoren.