Für welche Werte von c ∈ R besitzt das lineare Gleichungssystem Ax = 0 nichttriviale Lösungen x ≠ 0?
Gegeben ist die Matrix A
\( \mathbf{A}=\left(\begin{array}{cccc}2+c & 0 & 0 & 0 \\ 0 & 2-c & 0 & 0 \\ 1 & -2 & -c & -1 \\ 2 & -4 & 1 & -c\end{array}\right) \)
Mein Ansatz wäre gewesen eine Determinante auszurechnen, sodass b eingesetzt: D = 0 ergibt. Die zutreffenden b-Werte hätte ich dann ausgegrenzt, um schlussendlich die Frage zu beantworten ( Da LGS' mit D=0 ja singulär sind, und ich aber ein reguläres haben möchte). Meine Lösung: L= {b ∈ R | b ≠ 3 & b ≠ -3 }
Mein Prof geht aber wie folgt vor (und hier kommt die eigentliche Frage): Er rechnet det(A) = 0 und grenzt dann aber das Ergebnis nicht aus, sondern gibt dieses als Lösung an, sodass für b = 3 oder b = -3 das Gleichungssystem Ax=0 nichttriviale Lösungen besitzt.
Ich will nicht verstehen, weshalb das richtig sein soll... Wenn det(A) ≠ 0 , dann habe ich doch nichttriviale Lösungen?! Wenn det(A) = 0 dann gibt es doch unendlich viele, bzw. gar keine Lösung...b-Werte, für die gilt: det(A) = 0 sind doch "ungewollt" in diesem Zusammenhang??
LG