Aufgabe:
Ich tue mich schwer, folgende Äquivalenzaussage zu beweisen. Eine Umgebung aus dem Rn ist genau dann offen bzgl. der euklidischen Metrik, wenn U offen ist bzgl. der Maximumsmetrik.
Problem/Ansatz:
Ich habe mit der Hinrichtung begonnen. also man nehme an, dass U offen bzgl der euklidischen Metrik ist, d.h. für alle x∈U ∃ε, s.d. Bε(x)⊆U ist. Außerdem weiß ich, dass es C1,C2∈ℝ>0 gibt, s.d.C1*IIxII2≤ IIxII∞≤C2*IIxII2