Ja mit dem Kehrwert wärst du schon fast fertig gewesen.
Ah gut das du was zu deiner Situation gesagt hast, dann lass mich doch anders argumentieren:
Jede Ungleichung ist eine Aussage. "Genau dann wenn" bedeutet bei einer Umformung, dass die eine Ungleichung genau dann stimmt wenn die andere stimmt. Dies schreibt man mit dem Äquivalenzzeichen \(\Leftrightarrow\) .
Bei a) du untersuchst ja ob \( a_{n+1} < a_n \) für alle \(n\) gegeben ist. Dies bedeutet ja: "Jedes aufeinanderfolgende Folgenglied ist kleiner als das vorherige" (Bedeutung von streng monoton fallend). Durch äquivalentes umformen hast du am Ende die Ungleichung \( 0 < 1 \) die ja richtig ist. Somit ist deine Anfangsbehauptung auch richtig :)
Zu b) Mach doch da weiter wo du aufgehört hast, deine bisherige Argumentation entspricht nicht einem Beweis sondern kann nur als "raten" interpretiert werden.
\( 2n^2 - 2n - 2\geq 0 \Leftrightarrow n^2-n-2 \geq 0 \Leftrightarrow (n+1)(n-2) \geq 0\)
Wenn \(n \geq 2 \) ist, dann sind beide Faktoren auf der linken Seite positiv und das Produkt ist tatsächlich größer als 0. Das heißt unsere letzte Ungleichung ist wahr. Damit ist auch die erste Ungleichung (die zu beweisende Behauptung) auch wahr.
Hoffe das hilft dir weiter, wenn nicht dann versuch präzise Rückfragen zu stellen :)