es gibt in der Mengenlehre ja Teilmengen und echte Teilmengen. Bei einer Website habe ich gelernt, dass A = {1,2} eine Teilmenge von B = {1,2} ist.
Also grafisch dargestellt quasi ein großer Kreis, in dem ein kleiner Kreis ist und in diesem Kreis sind die Elemente der Menge A = {1,2}, welches eine Teilmenge von B =, {1,2} ist.
Aber warum legt man dabei überhaupt eine Teilmenge fest? Denn bei einer Teilmenge sind ja sozusagen alle Mengen von der Obermenge in einer anderen Menge eingeordnet, das heißt man kann es quasi weglassen, da bei einer Teilmenge alle Mengen der Obermenge auch in der Teilmenge enthalten sind und andersrum, was jedoch bei einer echten Teilmenge nicht der Fall ist. Da hat man in der echten Obermenge Elemente, die nicht in der echten Teilmenge enthalten sind, von daher würde sich eine Trennung von Mengen innerhalb der Obermenge lohnen, da man evt. verschiedene Eigenschaften von Zahlen charakterisieren möchte, z.B Ganze Zahlen sind echte Obermenge von natürlichen Zahlen
Meine Frage ist also, warum braucht man Teilmengen und Obermengen überhaupt, wenn die Obermenge B = {a,b} genau die selben Elemente beinhaltet, wie die Teilmenge A={a,b}? Meiner Meinung nach sind nur echte Teil und Obermengen sinnvoll.