nehmen wir mal als bewiesen, dass \(\sum_{i=1}^{n}{i}=\frac{n(n-1)}{2}\) und \(\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n-1)^{2}}{4}\), dann weißt du, dass \(\left(\sum_{i=1}^{n}{i}\right)^2=\sum_{i=1}^{n} i^{3}\)
Also beweise \(\sum_{i=1}^{n} i^{3}=\frac{n^2(n-1)^2}{4}\).
Vice versa ist natürlich auch legitim.