0 Daumen
1,1k Aufrufe

Aufgabe:

Zeige, dass der Arkustangens gegeben ist durch die Potenzreihe

arctan(x) = \( \sum\limits_{n=0}^{\infty}{(-1)^{n}\frac{x^{2n+1}}{2n+1}} \)

Hinweis: Identitätssatz für differenzierbare Funktionen


Problem/Ansatz:

Generell ist mir die Vorgehensweise klar - zuerst habe ich gezeigt, dass für x=0 beide Terme gleich sind

arctan(0) = 0 = \( \sum\limits_{n=0}^{\infty}{(-1)^{n}\frac{0^{2n+1}}{2n+1}} \)

Dann habe ich beide Terme abgeleitet.

Dabei komme ich auf

f'(x) = \( \frac{1}{1+x^{2}} \)   (Ableitung des arctan)

g'(x) = \( \sum\limits_{n=1}^{\infty}{(-1)^{n}\frac{x^{2n}}{2n+1}(2n+1)} \) = \( \sum\limits_{n=1}^{\infty}{(-x^2)^{n}} \)


Theoretisch sollte man nun ja über die geometrische Reihenformel zeigen, dass die Gleichheit stimmt, da g'(x) = \( \frac{1}{1-(-x^2)} \).

Nun gibt es aber ein Problem: g'(x) fängt bei n=1 zu summieren an, bei der geometrischen Reihe wird aber bei n=0 angefangen. Also trifft ja auch die Schreibweise \( \frac{1}{1-(-x^2)} \) nicht mehr zu.

Hat jemand eine Idee, wie ich da weiter komme?


Liebe Grüße

Niklas

Avatar von

g'(x) fängt bei n=1 zu summieren an,

Wieso?

Hat sich erledigt - bei einer Definition im Skript hieß es, dass die Ableitung einer Potenzreihe immer bei n=1 anfängt, da war der Exponent allerdings n und nicht 2n+1

Musst du den Identitätssatz verwenden? Mit der Binomischen Reihe geht das auch ganz elegant.

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community