Die Zeit X (in Tagen), die ein Arbeitsloser braucht, um wieder eine Anstellung zu finden, hat annähernd eine Wahrscheinlichkeitsverteilung mit folgender Dichtefunktion:
\( f(x)=\left\{\begin{array}{ll}0 & x<0 \\ 0.0086 \cdot \exp (-0.0086 x) & x \geq 0\end{array}\right. \)
a. Wie groß ist die Wahrscheinlichkeit, dass ein Arbeitsloser genau 36 Tage benötigt, um eine Anstellung zu finden? (Geben Sie das Ergebnis in Prozent an.)
b. Wie groß ist die Wahrscheinlichkeit, dass ein Arbeitsloser zwischen 69 und 102 Tage benötigt, um eine Anstellung zu finden? (Geben Sie das Ergebnis in Prozent an.)
c. Nach wie vielen Tagen hat ein Arbeitsloser mit einer Wahrscheinlichkeit von 69% eine Anstellung gefunden?
d. Wie viele Tage dauert es im Mittel, bis ein Arbeitsloser wieder eine Anstellung findet?
Kann mir bitte jemand beim Ansatz helfen?