Aufgabe:
Wir würfeln zweimal mit einem 6-seitigen Würfel. Die Zufallsvariablen X1 : Ω → {1, . . . , 6}, (a, b) → a und X2 : Ω → {1, . . . , 6}, (a, b) → b auf Ω = {1, . . . , 6}2 geben das Ergebnis des ersten bzw. zweiten Wurfs an.
(a) Bestimmen Sie die Wahrscheinlichkeitsverteilungen von X1 + X2 und X1 − X2.
(b) Bestimmen Sie die Wahrscheinlichkeitsverteilung von (X1 + X2) · (X1 − X2) und
daraus die Kovarianz Kov(X1 + X2, X1 − X2).
Problem/Ansatz:
Verstehe ich das richtig, das einfach das hier gefragt ist bei der a):
n | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
P(X1+X2= n) | 1/36 | 1/18 | 1/12 | 1/9 | 5/36 | 1/6 | 5/36 | 1/9 | 1/12 | 1/18 | 1/36 |
n | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
P(X1-X2 = n) | 1/36 | 1/18 | 1/12 | 1/9 | 5/36 | 1/6 | 5/36 | 1/9 | 1/12 | 1/18 | 1/36 |
Und falls ja, gibt es jetzt eine effizientere Möglichkeit die Verteilung von (X1 + X2) · (X1 − X2) zu bestimmen, als alle Möglichkeiten durchzugehen? Danke für Antworten :)