Aufgabe:
Es seien \( v_{1}, \ldots, v_{\ell} \in \mathbb{K}^{n} \) und \( w_{1}, \ldots, w_{\ell} \in \mathbb{K}^{n} \), sowie
\( A=\left(\begin{array}{c} v_{1}^{T} \\ \vdots \\ v_{\ell}^{T} \end{array}\right) \in \mathbb{K}^{\ell \times n} \quad \text { und } \quad B=\left(\begin{array}{c} w_{1}^{T} \\ \vdots \\ w_{\ell}^{T} \end{array}\right) \in \mathbb{K}^{\ell \times n} \text {. } \)
(b) Zeigen Sie: Wenn ein \( E \in \mathrm{GL}_{\ell}(\mathbb{K}) \) existiert mit \( A=E B \), dann ist
\( \operatorname{span}\left(v_{1}, \ldots, v_{\ell}\right)=\operatorname{span}\left(w_{1}, \ldots, w_{\ell}\right) . \)
(c) Zeigen Sie: Wenn \( B \) aus \( A \) durch endlich viele elementare Zeilenumformungen entstanden ist, dann ist \( \operatorname{span}\left(v_{1}, \ldots, v_{\ell}\right)=\operatorname{span}\left(w_{1}, \ldots, w_{\ell}\right) \).
Problem/Ansatz:
Hat jemand eine Idee wie man das löst?