Aloha :)
Das Integral über die geschlossene Oberfläche der Menge \(K\) kannst du mit Hilfe des Gauß'schen Integralsatzes auf das Integral über das gesamte Volumen der Menge \(K\) zurückführen:$$\phi=\oint\limits_{\partial K}\vec F\,d\vec S=\int\limits_K\operatorname{div}(\vec F)\,dV$$
Die Divergenz des Vektorfeldes ist$$\vec F(\vec r)=\begin{pmatrix}0\\0\\x_3\end{pmatrix}\implies\operatorname{div}(\vec F(\vec r))=\frac{\partial F_1}{\partial x_1}+\frac{\partial F_2}{\partial x_2}+\frac{\partial F_3}{\partial x_3}=0+0+1=1$$Daher bleibt im Integranden nur das Volumenelement \(dV\) übrig.
Für die Integration brauchen wir noch einen Ortsvektor \(\vec r\), der alle Punkte des Volumens \(K\) abtastet. Da die Menge \(K\) einen Ellipsoiden beschreibt, drängen sich Kugelkoordinaten auf:$$\vec r=\begin{pmatrix}r\cos\varphi\sin\vartheta\\3r\sin\varphi\sin\vartheta\\4r\cos\vartheta\end{pmatrix}\quad;\quad r\in[0;1]\;;\;\varphi\in[0;2\pi]\;;\;\vartheta\in[0;\pi]$$Der Faktor \(3\) bei der y-Koordinate und der Faktor \(4\) bei der z-Koordinate berücksichtigen die Längen der entsprechenden Halbachsen des Ellipsoiden. Sie führen aber auch dazu, dass das übliche Volumenelement in Kugelkoordnaten \((dV=r^2\sin\vartheta\,dr\,d\varphi\,d\vartheta)\) um den Faktor \(3\cdot4=12\) vergrößert wird.
[Bemerkung dazu: Wenn du das Volumenelement mit der Funktionaldeterminante transformierst, erhältst du eine Zeile, die um den Faktor \(3\) und eine Zeile, die um den Faktor \(4\) vergrößert ist. Beide Faktoren kannst du vor die Determinante ziehen.]
Das gesuchte Flussintegral können wir daher so formulieren:$$\phi=\int\limits_{r=0}^1\,\int\limits_{\varphi=0}^{2\pi}\;\int\limits_{\vartheta=0}^\pi12\,r^2\,\sin\vartheta\,dr\,d\varphi\,d\vartheta=12\int\limits_0^1r^2\int\limits_{\varphi=0}^{2\pi}d\varphi\int\limits_{\vartheta=0}^{\pi}\sin\vartheta\,d\vartheta$$$$\phantom\phi=12\cdot\left[\frac{r^3}{3}\right]_0^1\cdot\left[\varphi\right]_0^{2\pi}\cdot\left[-\cos\vartheta\right]_0^{\pi}=12\cdot\frac13\cdot2\pi\cdot2=16\,\pi$$