Hallo,
zu \( \Rightarrow: \) Sei \( x \in U \). Da \(U\) offen in \((X,d_1)\), existiert \(r>0: \, B^{d_1}(x,r) \subset U \), wobei \(B^{d_1}(x,r) = \lbrace{y\in X \,:\, d_1(x,y) < r\rbrace} \). Setze \( r^\prime= r\cdot c_1>0 \). Dann gilt für alle \(y\in\,B^{d_2}(x,r^\prime):\)
\(d_1(x,y) \leq1/c_1 \cdot d_2(x,y) < 1/c_1 \cdot r^\prime = r, \)
also \(y \in B^{d_1}(x,r) \).
\(\Rightarrow B^{d_2}(x,r^\prime) \subset B^{d_1}(x,r) \subset U \), mithin \(U\) offen in \((X,d_2)\)