Aufgabe:
$$\text{ Seien } (X,d_X) \text{ und } (Y,d_y) \text{ metrische Räume und sei } f: X \rightarrow Y \text{ eine Funktion und sei } a \in X \newline \text{ Zeigen Sie: Wenn es eine Konstante } C \geq 0 \text{ mit } d_Y(f(x),f(a)) \leq Cd_X(a,x) \newline \text{ für alle } x \in X \text{ gibt, dann ist f in a stetig. } $$
Problem/Ansatz:
Ich habe leider gar keinen Ansatz.