ich habe eine Problem mit folgender Aufgabe. Mein Problem besteht darin eine Basis für den Unterraum U aufzuschreiben.
Mein bisheriger Lösungsansatz:
um die Dimension zu ermitteln muss ich die Anzahl der linear unabhängigen Vektoren herausfinden, da diese den Unterraum aufspannen. Dies mache ich in dem ich die Quadrupel Zeilenweise aufschreibe und umforme.
$$ \begin{matrix} { a }_{ 1 } & = \\ { a }_{ 2 } & = \\ { a }_{ 3 } & = \\ { a }_{ 4 } & = \end{matrix}\begin{pmatrix} -1 & 0 & 3 & -2 \\ 2 & 1 & 10 & 0 \\ 1 & 2 & 3 & 4 \\ -3 & 1 & -1 & 0 \end{pmatrix}\overset { durch }{ \underset { Umformung }{ \longrightarrow } } \begin{pmatrix} -1 & 0 & 3 & -2 \\ 0 & 1 & 16 & -4 \\ 0 & 0 & -26 & 10 \\ 0 & 0 & 0 & 0 \end{pmatrix} $$
Könnte ich das ganze auch in Komponenten Schreibweise gestalten, sprich ich reihe die Quadrupel nebeneinander zu einer 4x4 MAtrix und forme dann um ?
Demnach habe ich 3 linear unabhängige Vektoren und mein Unterraum hat die Dimension 3.
Und nun zu meinem Problem. Wie sieht eine beliebige Basis des Unterraums aus? Hat sie 3 oder 4 Vektorkomponenten
$$ \begin{pmatrix} { e }_{ 1 } \\ { e }_{ 2 } \\ { e }_{ 3 } \end{pmatrix}\quad oder\quad \begin{pmatrix} { e }_{ 1 } \\ { e }_{ 2 } \\ { e }_{ 3 } \\ { e }_{ 4 } \end{pmatrix} $$
Kann ich 3 willkürliche Vektoren nehmen die nicht linear von einander abhängig sind z.B.
$$ { basisvektor }_{ 1 }\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},{ basisvektor }_{ 2 }\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},{ basisvektor }_{ 3 }\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\quad (bzw.\quad mit\quad 4\quad Vektorkomponenten) $$
Ich hoffe es kann mir jemand weiter helfen,