- Bestimme die Taylorreihe von 1/√(2π) e-½x2.
- Integriere von -∞ bis t.
- Verwende Intervallschachtelung, um eine Näherung für t zu bestimmen, so dass das Integral den Wert (1-0,95)/2 hat.
Ergebnis ist die untere Intervallgrenze. Die obere Intervallgrenze ist die Gegenzahl. Falls es sich nicht um die Standardnormalverteilung handelt, muss das Ergebnis noch an den tatsächlichen Erwartungswert und die tatsächliche Standardabweichung angepasst werden.
Ich hoffe, deine Frage ist rein akademischer Natur und du ziehst nicht ernsthaft in Erwägung, die gesuchte Umgebung so zu bestimmen. Es könnte aufwendig werden. Problematisch sind die zwei Fehlerquellen, die in dieser Rechnung stecken: erstens musst du die Auswertung des Integrals nach endlich vielen Summanden abbrechen, zweitens liefert die Intervallschachtelung lediglich eine Näherung.
Eine "einfache" Möglichkeit, zum Beispiel durch Gleichungsumformungen, gibt es nicht. Der gezeigte Weg ist aber prinzipiell von Hand ausführbar (aber, wie gesagt, aufwändig).