In order to find an orthonormal basis for the linear subspace generated by \(v_1,v_2,v_3\), you may use the Gram-Schmidt process. $$\mathcal{B}^*_{\langle v_1,v_2,v_3\rangle }= \{v_1^*,v_2^*,v_3^*\}=\left\{\left(\begin{array}{c}\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2}\end{array}\right), \left(\begin{array}{c}\frac{1}{2}\\- \frac{1}{2}\\- \frac{1}{2}\\\frac{1}{2}\end{array}\right), \left(\begin{array}{c}\frac{1}{2}\\\frac{1}{2}\\- \frac{1}{2}\\- \frac{1}{2}\end{array}\right)\right\} $$ If you wish to extend that basis to an orthonormal basis of \(\mathbb{R}^4\), you could add any vector \(v_4\) that suffices the following two conditions:
\((\text{i})\) \(\langle v_4,v_i^*\rangle =0\) where \(i\in \{1,2,3\}\).
\((\text{ii})\) \(\langle v_4,v_4\rangle =1\).
Try \(v_4=(-0.5,0.5,-0.5,0.5)^T\).